247 research outputs found

    Compact, fiber-compatible, cascaded Raman laser

    Get PDF
    Cascaded Raman Stokes lasing in an ultrahigh-Q silica microsphere resonator coupled to a tapered fiber is demonstrated and analyzed. With less than 900 ÎĽW of pump power near 980 nm, five cascaded Stokes lasing lines are generated. In addition, a threshold power of 56.4 ÎĽW for the first-order Stokes lasing is achieved. The Stokes lasing lines exhibit distinct characteristics depending on their order, as predicted by theoretical analysis

    Nonlinear states and dynamics in a synthetic frequency dimension

    Full text link
    Recent advances in the study of synthetic dimensions revealed a possibility to employ the frequency space as an additional degree of freedom which allows for investigating and exploiting higher-dimensional phenomena in a priori low-dimensional systems. However, the influence of nonlinear effects on the synthetic frequency dimensions was studied only under significant restrictions. In the present paper, we develop a generalized mean-field model for the optical field envelope inside a single driven-dissipative resonator with quadratic and cubic nonlinearities, whose frequencies are coupled via an electro-optical resonant temporal modulation. The leading order equation takes the form of driven Gross-Pitaevskii equation with a cosine potential. We numerically investigate the nonlinear dynamics in such microring resonator with a synthetic frequency dimension in the regime where parametric frequency conversion occurs. In the case of anomalous dispersion, we find that the presence of electro-optical mode coupling confines and stabilizes the chaotic modulation instability region. This leads to the appearance of a novel type of stable coherent structures which emerge in the synthetic space with restored translational symmetry, in a region of parameters where conventionally only chaotic modulation instability states exist. This structure appears in the center of the synthetic band and, therefore, is referred to as Band Soliton. Finally, we extend our results to the case of multiple modulation frequencies with controllable relative phases creating synthetic lattices with nontrivial geometry. We show that an asymmetric synthetic band leads to the coexistence of chaotic and coherent states of the electromagnetic field inside the cavity i.e. dynamics that can be interpreted as chimera-like states. Recently developed χ(2)\chi^{(2)} microresonators can open the way to experimentally explore our findings.Comment: 12 pages, 5 figures; figure 4 and typos correcte

    Molecular cavity optomechanics: a theory of plasmon-enhanced Raman scattering

    Full text link
    The conventional explanation of plasmon-enhanced Raman scattering attributes the enhancement to the antenna effect focusing the electromagnetic field into sub-wavelength volumes. Here we introduce a new model that additionally accounts for the dynamical and coherent nature of the plasmon-molecule interaction and thereby reveals an enhancement mechanism not contemplated before: dynamical backaction amplification of molecular vibrations. We first map the problem onto the canonical model of cavity optomechanics, in which the molecular vibration and the plasmon are \textit{parametrically coupled}. The optomechanical coupling rate, from which we derive the Raman cross section, is computed from the molecules Raman activities and the plasmonic field distribution. When the plasmon decay rate is comparable or smaller than the vibrational frequency and the excitation laser is blue-detuned from the plasmon onto the vibrational sideband, the resulting delayed feedback force can lead to efficient parametric amplification of molecular vibrations. The optomechanical theory provides a quantitative framework for the calculation of enhanced cross-sections, recovers known results, and enables the design of novel systems that leverage dynamical backaction to achieve additional, mode-selective enhancement. It yields a new understanding of plasmon-enhanced Raman scattering and opens a route to molecular quantum optomechanics.Comment: Extensively revised and improved version thanks to the hard work and constructive comments of a careful Referee. Includes Supplemental Materia

    Radiation Hardness of High-Q Silicon Nitride Microresonators for Space Compatible Integrated Optics

    Full text link
    Integrated optics has distinct advantages for applications in space because it integrates many elements onto a monolithic, robust chip. As the development of different building blocks for integrated optics advances, it is of interest to answer the important question of their resistance with respect to ionizing radiation. Here we investigate effects of proton radiation on high-Q silicon nitride microresonators formed by a waveguide ring. We show that the irradiation with high-energy protons has no lasting effect on the linear optical losses of the microresonators

    Theoretical and experimental study of stimulated and cascaded Raman scattering in ultra-high-Q optical microcavities

    Get PDF
    Stimulated Raman scattering (SRS) in ultra-high-Q surface-tension-induced spherical and chip-based toroid microcavities is considered both theoretically and experimentally. These microcavities are fabricated from silica, exhibit small mode volume (typically 1000 ÎĽm3\mu m^{3}) and possess whispering-gallery type modes with long photon storage times (in the range of 100 ns), significantly reducing the threshold for stimulated nonlinear optical phenomena. Oscillation threshold levels of less than 100 ÎĽ\mu % -Watts of launched fiber pump power, in microcavities with quality factors of 100 million are observed. Using a steady state analysis of the coupled-mode equations for the pump and Raman whispering-gallery modes, the threshold, efficiencies and cascading properties of SRS in UHQ devices are derived. The results are experimentally confirmed in the telecommunication band (1550nm) using tapered optical fibers as highly efficient waveguide coupling elements for both pumping and signal extraction. The device performance dependence on coupling, quality factor and modal volume are measured and found to be in good agreement with theory. This includes analysis of the threshold and efficiency for cascaded Raman scattering. The side-by-side study of nonlinear oscillation in both spherical microcavities and toroid microcavities on-a-chip also allows for comparison of their properties. In addition to the benefits of a wafer-scale geometry, including integration with optical, electrical or mechanical functionality, microtoroids on-a-chip exhibit single mode Raman oscillation over a wide range of pump powers.Comment: 12 pages, 15 figure

    Nonlinear Quantum Optomechanics via Individual Intrinsic Two-Level Defects

    Full text link
    We propose to use the intrinsic two-level system (TLS) defect states found naturally in integrated optomechanical devices for exploring cavity QED-like phenomena with localized phonons. The Jaynes-Cummings-type interaction between TLS and mechanics can reach the strong coupling regime for existing nano-optomechanical systems, observable via clear signatures in the optomechanical output spectrum. These signatures persist even at finite temperature, and we derive an explicit expression for the temperature at which they vanish. Further, the ability to drive the defect with a microwave field allows for realization of phonon blockade, and the available controls are sufficient to deterministically prepare non-classical states of the mechanical resonator.Comment: Comments welcome (5+7 pages), Final Published Versio

    Heralded single phonon preparation, storage and readout in cavity optomechanics

    Full text link
    We analyze theoretically how to use the radiation pressure coupling between a mechanical oscillator and an optical cavity field to generate in a heralded way a single quantum of mechanical motion (a Fock state), and release on-demand the stored excitation as a single photon. Starting with the oscillator close to its ground state, a laser pumping the upper motional sideband leads to dynamical backaction amplification and to the creation of correlated photon-phonon pairs. The detection of one Stokes photon thus projects the macroscopic oscillator into a single-phonon Fock state. The non-classical nature of this mechanical state can be demonstrated by applying a readout laser on the lower sideband (i.e. optical cooling) to map the phononic state to a photonic mode, and by performing an autocorrelation measurement on the anti-Stokes photons. We discuss the relevance of our proposal for the future of cavity optomechanics as an enabling quantum technology.Comment: Accepted for publication in Physical Review Letters. Added References 42,4

    Temporal Behavior of Radiation-Pressure-Induced Vibrations of an Optical Microcavity Phonon Mode

    Get PDF
    We analyze experimentally and theoretically mechanical oscillation within an optical cavity stimulated by the pressure of circulating optical radiation. The resulting radio frequency cavity vibrations (phonon mode) cause modulation of the incident, continuous-wave (cw) input pump beam. Furthermore, with increasing cw pump power, an evolution from sinusoidal modulation to random oscillations is observed in the pump power coupled from the resonator. The temporal evolution with pump power is studied, and agreement was found with theory. In addition to applications in quantum optomechanics, the present work suggests that radiation-pressure-induced effects can establish a practical limit for the miniaturization of optical silica microcavities
    • …
    corecore